Variability in stratospheric water, methane and temperatures observed in HALOE data

Bill Randel National Center for Atmospheric Research Boulder, Colorado

Context:

Global ozone decrease of ~ 3% since 1980

Cooling of lower stratosphere by ~1-2 K

This talk:

- methane changes
- HALOE temperatures
- stratospheric water vapor

Why is methane interesting?

HALOE methane

Methane 'trends' 1992-2003

Correlated changes in CH₄ and HCI

Upper stratospheric temperatures

- Available data:
 - operational satellite data (SSU/MSU/AMSU)
 - meteorological analyses / reanalyses
 - lidars (few locations)
 - SAGE II and HALOE

data from NOAA operational satellites

SSU: ~10-15 km thick layer temperatures

<u>Updated stratospheric temps from SSU/MSU</u>

^{*} Thanks to John Nash, Jim Miller, Mel Gelman and Roger Lin

Temp trends 1979-2003

SSU vs. HALOE

SSU vs. HALOE

Problems in operational analyses / reanalyses due to changes in satellite instruments

Changes in stratospheric water vapor

- HALOE global measurements for 1991-2004
- coherence with tropical tropopause temperatures
- comparison with Boulder balloon measurements

Changes in stratospheric water vapor from HALOE, 1991-2003

Latitude-time variations at 82 hPa

Arctic H2O measurements from POAM

low values after 2001 consistent with HALOE

Comparison of POAM and HALOE anomalies 1998-2003

Remarkable agreement for changes ~ 0.2 ppmv!

Correlations with tropical tropopause temperatures

Comparisons with Boulder balloon data

Comparisons with Boulder balloon data

The only two continuous data sets for stratospheric water vapor disagree in 'trends' for 1992-2003.

Frost-point balloon data:

- * calibrated, trusted technique
- * ~once-month 'snapshot' sampling

HALOE:

- * calibrated, trusted technique
- * global sampling
- * good agreement with POAM
- * internal geophysical coherence:
 - anomalies propagate in latitude/height
 - variations correlated with tropical tropopause temperatures

Most recent changes (updated to April 04)

Most recent changes (updated to April 04)

Most recent changes (updated to April 04)

Vertical profile of temperature anomalies for 2001-04 (from tropical radiosondes)

Spatial pattern of temp changes: 2001-2004

Spatial pattern of temp changes: 2001-2004

time series of SHADOZ ozone

vertical profile of SHADOZ ozone changes

time series from SHADOZ and SAGE II

vertical profile of 2001-03 ozone changes

latitude structure from SAGE II

Anomalous conditions near tropical tropopause during ~2001-2004

- temperatures cold by ~1-2 K
 (over narrow vertical layer, ~16-22 km)
- water vapor low (response to temperatures)
- ozone low over ~14-19 km (sondes and SAGE II)
- ozone and temperature changes centered in tropics

Changes are consistent with an increase in the tropical Brewer-Dobson circulation

Observed variations in planetary wave driving

Key points:

- How do we reconcile HALOE water vapor and Boulder balloon data?
- What is causing the recent persistent changes near the tropical tropopause?
- Important to maintain satellite data records (thanks to SAGE and UARS!)

Correlated changes in CH₄ and HCI

